Agar tidak hilang begitu saja, maka ikatlah ilmu itu dengan cara menuliskannya.


 
Home | Produk | Alamat Kontak | Management | Bisnis Link | Artikel Teknik


Prinsip Kerja Satelit

Satelit adalah stasiun relay yang digantung di langit. Disebut stasiun relay karena fungsi utama satelit adalah merelay sinyal-sinyal yang berasal dari bumi. Sinyal-sinyal yang diterimanya dari bumi itu digeser dulu frekuensinya baru kemudian dipancarkan kembali ke bumi. Jadi pada dasarnya satelit itu berisi rangkaian translator frekuensi, yaitu rangkaian elektronik yang terdiri dari penerima, penggeser frekuensi dan pemancar [perhatikan gambar (1) di bawah ini].


Gambar (1): Diagram blok rangkaian penggeser frekuensi di dalam satelit

Sinyal dari bumi yang sampai ke satelit sangat lah lemah. Sebab sinyal yang dikirim dari bumi hingga mencapai satelit akan melalui lintasan (path) ruang yang sangat jauh sehingga sinyal akan mengalami redaman (free space path loss) yang sangat besar. Redaman ini disebabkan karena sifat radiasi gelombang elektromagnetik itu memancar ke segala arah (seperti bola yang mengembang) sehingga kekuatan sinyal akan melemah sebanding dengan kuadrat dari jarak yang ditempuhnya. Selain itu jarak tempuh itu akan terasa semakin jauh bagi sinyal yang panjang gelombangnya makin pendek. Dengan demikian besarnya redaman ini berbanding lurus dengan kuadrat dari jarak dan frekuensi yang digunakan, dimana secara matematis dituliskan sbb.:

Untuk memudahkan perhitungan, formula di atas bisa disederhanakan menjadi:

L = 32.4 + 20 Log d + 20 Log f

L adalah besarnya Loss atau redaman (dalam satuan dB)
f adalah frekuensi kerja yang digunakan (dalam satuan MHz)

d adalah jarak tempuh antara stasiun bumi dng satelit (dalam satuan km)

Sekedar contoh misalnya frekuensi kerja yang digunakan untuk up-link adalah 6 GHz = 6.000 MHz, dan jarak antara stasiun bumi ke satelit = 36.000 km, maka besarnya redaman pada arah up-link

L-up = 32.4 + 20 Log 36.000 + 20 Log 6.000 = 32.4 + 91.1 + 75.6 = 199.1 dB

Redaman ini sangat besar sehingga sinyal yang diterima di satelit sangatlah lemah. Maka agar sinyal yang sangat lemah ini bisa dipancarkan kembali ke bumi dengan daya pancar yang cukup, dibutuhkan rangkaian penguat yang bertingkat-tingkat. Pada tingkat pertama sinyal diperkuat oleh gain antenna penerima. Output dari antenna yang juga masih sangat lemah kemudian diperkuat lagi dengan LNA (Low Noise Amplifier). Setelah levelnya cukup, sinyal ini kemudian dimasukkan ke rangkaian mixer-1 untuk digeser frekuensinya ke frekuensi L-Band.

Penggeseran frekuensi menurunkan level sinyal, sehingga sinyal harus diperkuat lagi pada tahap ini. Setelah levelnya cukup, sinyal dimasukkan lagi ke mixer-2 untuk digeser lagi frekuensinya ke frekuensi kerjanya (frekuensi down link). Pada tahap ini sinyal diperkuat lagi oleh driver amplifier dan kemudian diperkuat oleh HPA (High Power Amplifier) agar diperolah daya pancar yang cukup besar. Pada tahap akhir, sinyal kemudian diperkuat lagi oleh antenna pemancar untuk menghasilkan apa yang disebut dengan EIRP (Equivalent Isotropic Radiated Power). Besaran EIRP inilah yang kemudian oleh satelit dipancarkan kembali ke bumi.

Sebagaimana dijelaskan pada bab translasi frekuensi, pergeseran frekuensi sama sekali tidak mengubah nilai informasi yang terkandung di dalam sinyal tersebut. Jadi meskipun di satelit frekuensi sinyal di geser sebanyak dua kali, akan tetapi informasi yang terkandung di dalamnya masih tetap utuh (sama sekali tidak berubah). Oleh karena itu menjadi jelas bahwa fungsi satelit dalam hal ini hanya merelay sinyal yang berasal dari bumi untuk kemudian dipancarkan lagi kembali ke bumi.

Pergeseran frekuensi sebanyak dua kali dimaksudkan untuk memperoleh gain yang sangat tinggi. Sebab memperkuat sinyal di satu frekuensi kerja akan menyebabkan amplifier mudah berosilasi (sinyal output masuk kembali ke input). Untuk menghindari hal ini terjadi maka sinyal harus diperkuat pada frekuensi kerja yang berbeda-beda. Dalam gambar (3) diperlihatkan sebuah contoh bahwa gain total satelit adalah sekitar 170 dB. Gain sebesar ini akan sangat sulit diperoleh bila amplifier bekerja pada satu frekuensi kerja. Oleh karena itu penguatan sinyal dilakukan di 3 frekuensi yang berbeda. Pertama sinyal diperkuat pada frekuensi Rx (dengan menggunakan LNA). Kemudian frekuensinya digeser ke L-Band dan penguatan kedua dilakukan pada frekuensi ini. Selanjutnya frekuensi sinyal di geser lagi ke frekuensi Tx dan diperkuat lagi (oleh HPA) hingga mencapai daya pancar sesuai yang diinginkan. Dengan cara ini maka akan diperoleh gain total yang sangat tinggi.

Penguatan sinyal mulai dari antenna penerima, LNA, HPA hingga antenna pemancar disebut dengan Gain Satelit [perhatikan gambar (1) di atas]. Besarnya Gain Satelit telah didesain sedemikian rupa sehingga sinyal yang diterima dari bumi mampu menghasilkan daya pancar maksimum sesuai kapasitas HPA yang terpasang di satelit. Daya output dari HPA selanjutnya diperkuat lagi oleh antenna sehingga diperoleh EIRP yang tinggi. Sebab sinyal yang dipancarkan oleh satelit ke bumi akan mengalami redaman yang sangat besar. Sekedar gambaran misalnya frekuensi down link yang digunakan adalah 4 GHz = 4.000 MHz, maka besarnya redaman pada arah Down Link adalah:

L-down = 32.4 + 20 Log 36.000 + 20 Log 4.000 = 32.4 + 91.1 + 72.0 = 195.5 dB

Redaman down-link ini sangat besar, sehingga sinyal yang diterima di bumi juga sangat lemah. Itulah sebabnya dibutuhkan gain yang cukup besar di stasiun penerima di bumi agar informasi yang terkandung dalam sinyal dapat dideteksi kembali. Apabila kualitas sinyal yang diterima belum sesuai dengan kebutuhan, maka daya pancar di sisi pengirim perlu diperbesar. Dengan cara ini maka secara otomatis daya yang dipancarkan oleh satelt juga ikut membesar. Kenaikan daya pancar di satelit merupakan fungsi linier dari kenaikan daya pancar di pengirim. Sebagai contoh misalnya, bila daya pancar di sisi pengirim dinaikkan 3 dB, maka daya pancar satelit juga akan naik 3 dB. Jika dinaiikan lagi 10 dB maka daya pancar di satelit juga akan naik 10 dB. Demikian seterusnya hingga pada suatu titik dimana kenaikan daya pancar di satelit tidak lagi linier. Pada titik ini daya pancar satelit sudah melampaui batas liniernya. Oleh karena itu penambahan daya di sisi pengirim tidak boleh sembarangan. Ada batas tertentu yang tidak boleh dilampaui. Inilah yang disebut dengan istilah Power Limitted, artinya satelit memiliki daya pancar yang terbatas.

Apabila daya pancar di sisi pengirim sudah tidak bisa lagi dinaikkan, sedangkan sinyal yang diterima masih belum sesuai dengan kebutuhan, maka jalan satu-satunya adalah dengan memperbesar diameter antena penerima. Makin besar diameter antena penerima akan semakin baik, karena sistem penerima akan menjadi lebih sensitif, artinya lebih mampu menerima sinyal-sinyal yang lemah. Namun makin besar diameter antena akan memerlukan lahan yang lebih besar, ukuran yang besar jelas tidak praktis dan harganya pun juga pasti lebih mahal. Oleh karena itu perhitungan daya pancar di sisi pengirim maupun besarnya diameter antena di sisi penerima harus dihitung dengan benar. Untuk itu ada beberapa paremeter yang perlu diketahui. Parameter satelit seperti G/T, Saturated Field Density (SFD) dan EIRP serta peta contour atau foot print umumnya diberikan oleh operator/pemilik satelit kepada para pelanggannya, sehinga masing-masing pelanggan dapat menghitung sendiri apa-apa yang dibutuhkannya.

Gambar (2): Illustrasi redaman up-link dan down-link

Gambar (3): Illustrasi level sinyal mulai dari pengirim, satelit hingga penerima di bumi.
Klik di sini untuk gambar yang lebih besar.

Artikel selanjutnya: Frekuensi Transponder

Ditulis oleh Dwi Ananto Widjojo @ PT. Dua Wijaya Teleinformatika © Jan 2012